ANALISIS TEGANGAN PADA POROS ENGKOL SEPEDA MOTOR HONDA GL PRO NEOTECH MENGGUNAKAN SOLIDWORKS 2021
Abstract
Sepeda motor terdapat salah satu komponen penting yaitu poros engkol (crankshaft). Poros engkol adalah komponen dengan geometri yang kompleks pada mesin pembakaran, berfungsi mengubah gerak translasi (gerak bolak-balik) piston menjadi gerak berputar terhadap poros. Poros engkol dioperasikan pada putaran tinggi sehingga poros engkol mengalami beban siklus yang cukup besar. Penelitian ini bertujuan untuk menginvestigasi beban yang terjadi pada poros engkol Honda GL Pro Neotech berbahan material AISI 1045 Steel, cold drawn dengan melakukan analisis static structural dengan tipe meshing tetrahedral 3D solid elements pada poros engkol menggunakan Solidworks 2021. Metode penelitian yang digunakan adalah menggunakan simulasi komputer dengan software berbasis Metode Elemen Hingga. Dilakukan untuk mendapatkan besarnya nilai tegangan yang terjadi pada lokasi kritis, perpindahan yang terjadi pada poros engkol dan faktor keamanan. Model poros engkol 3D dibuat melalui software Solidworks 2021. Beban kemudian diterapkan pada crankpin dan kondisi batas diterapkan pada crank journal. Hasil yang diperoleh dari analisis tersebut untuk mengetahui distribusi tegangan Von Mises, perpindahan dan faktor keamanan pada poros engkol akibat pembebanan secara statik. Gaya reaksi yang disebabkan gaya aksi yang diberikan terhadap crankpin sebesar 11.659,28 N. Kesimpulan dari penelitian ini adalah diketahuinya nilai tegangan Von Mises, perpindahan, dan faktor keamanan melalui hasil simulasi Solidworks. Didapatkan tegangan Von Mises maksimum sebesar 4,777e+01 N/mm2 dan tegangan Von Mises minimum sebesar 1,704e-08 N/mm2, perpindahan maksimum diperoleh sebesar 2,543e-03 mm dan FOS (factor of safety) minimum diperoleh sebesar 1,109+01.
References
Achmad Zainuri. (2010). Tegangan Maksimum Dan Faktor Keamanan Pada Poros Engkol Daihatsu Zebra Espass Berdasarkan Metode Numerik. Momentum, 6(2), 42–47. http://www.capellagroup.com/cm/sp
Bagde, B. J., & Raut, L. P. (2013). Finite Element Structural and Fatigue Analysis of Single Cylinder Engine Crank Shaft. International Journal of Engineering Research & Technology (IJERT), 2(7), 1540–1544.
Beer, F. P. (Ferdinand P., Johnston, E. R. (Elwood R., DeWolf, J. T., Prasad, N. S., & Krishnamurthy, S. (2004). Mechanics of materials : [in SI units]. Tata McGraw-Hill.
Gadge, L., Gadgey, K. K., & Jamra, S. (2018). Finite Element Analysis of Two Wheeler Honda Bike Crank Shaft. 5, 37–42.
Grujic, I., Glisovic, J., Stojanovic, N., Davinić, A., Grujić, I., Glišović, -Jasna, Stojanović, -Nadica, Davinić, -Aleksandar, Pešić, -Radivoje, Narayan, -Sunny, & Usman KAISAN, -Muhammad. (2018). Stress Analysis of the Crankshaft of Ic Engine. Machine Design, 10(2), 69–72. https://doi.org/10.24867/MD.10.2018.2.69-72
Guangyan, P. (2008). The Design of TBD62O Single Cylinder Diesel Engine, the Analysis of Perfomance and the Analysis of the Infinite Element of Main Part of the Movement.
Haifen, S. (2007). The FEM Analysis of the 6105 Engine Crankshaft Based on Ansys. Internal Combustion Engine Parts, 2, 18–20.
Karthick, L., Stephen leon, J., ravi, R., Michel, J., Mallireddy, N., & Vadivukarasi, L. (2022). Modelling and analysis of an EN8 crankshaft in comparison with AISI 4130 crankshaft material. Materials Today: Proceedings, 52, 1036–1040. https://doi.org/10.1016/J.MATPR.2021.10.484
Lianke, S., Tang-Bin, Dongxin, X., & Xigeng, S. (2007). FEA Optimal Design of Diesel Engine Crankshaft. Tractor Farm Transporter, 34(3), 54–55.
Meng, J., Liu, Y., & Liu, R. (2011). Finite Element Analysis of 4-Cylinder Diesel Crankshaft. International Journal of Image, Graphics and Signal Processing, 3(5), 22–29. https://doi.org/10.5815/ijigsp.2011.05.04
Montazersadgh, F., & Fatemi, A. (2007). Stress analysis and optimization of crankshafts subject to dynamic loading. Final Project Report Submitted to the Forging Industry Educational Research Foundation and American Iron and Steel Institute, The University of Toledo, August, 10–45. http://www.a-sp.org/~/media/Files/Autosteel/Programs/LongProducts/crankshaft_full_report_2.pdf
Montazersadgh, F. H., & Fatemi, A. (2007). Dynamic load and stress analysis of a crankshaft. SAE Technical Papers, 1–8. https://doi.org/10.4271/2007-01-0258
Muhammad, A., Ali, M. A. H., & Shanono, I. H. (2020). Fatigue and harmonic analysis of a diesel engine crankshaft using ansys. Lecture Notes in Mechanical Engineering, 371–376. https://doi.org/10.1007/978-981-15-0950-6_56
Parman, S., Ari-Wahjoedi, B., & Ismail, A. J. (2014). Finite element analysis of a four-cylinder four stroke gasoline engine crankshaft. MATEC Web of Conferences, 13, 2–6. https://doi.org/10.1051/matecconf/20141304004
Qu, Z. (2021). The Modal Analysis of the parallel bars of the crankshaft of a Mini Air Compressor on ANSYS. Journal of Physics: Conference Series, 1965(1). https://doi.org/10.1088/1742-6596/1965/1/012151
Shenoy, P. S., & Fatemi, A. (2006). Dynamic analysis of loads and stress in connecting rods. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(5), 615–624. https://doi.org/10.1243/09544062JMES105
Solanki, A., Tamboli, K., & Zinjuwadia, M. J. (2011). Crankshaft Design and Optimization- A Review. National Conference on Recent Trends in Engineering and Technology, May, 1–5.
Yogesh S. Khaladkar. (2014). Design, Analysis & Balancing of 5 Cylinder Engine Crankshaft. Ijmer, 4(12), 73–77. http://www.ijmer.com/papers/Vol4_Issue12/Version-3/K0412_03-7377.pdf
Yu, S., Chen, R., Xu, H., & Huichao, L. (2007). Finite Element Analysis of a Stagger Crankshaft Based on ANSYS. Neiranji Gongcheng (Chinese Internal Combustion Engine Engineering), 28(2), 65–67.
Zhou, X., Cai, G., Zhang, Z., International, Z. C.-2010 2nd, & 2010, undefined. (n.d.). The whole crankshaft model for dynamic simulation analysis of the diesel engine. Ieeexplore.Ieee.Org. Retrieved August 2, 2022, from https://ieeexplore.ieee.org/abstract/document/5473362/