Analysis Of The Effect Of Electric Current In TIG Welding Process On The Strength Of Welded Joints Of Aluminium 6061 Metal Material

  • Ilham Khalilulah Politeknik Manufaktur Bandung
  • Iwan Gunawan Politeknik Manufaktur Bandung
  • Ari Siswanto Politeknik Manufaktur Bandung
Keywords: Welding Current, Aluminum 6061, Filler ER 4043, Tensile Test, Bending Test, Microstructure

Abstract

The The selection of current in aluminum welding significantly affects weld joint quality. Excessively high current can lead to increased penetration, distortion, and overmelting. Conversely, low current may result in weak joints, insufficient penetration, and increased porosity risk. This study focuses on understanding the effect of current variations in the Tungsten Inert Gas (TIG) welding process on the strength of 6 mm thick aluminum 6061 welds using ER4043 filler. Tensile strength and flexibility are critical in construction, ensuring strong, stable, and durable welds to withstand static loads. The study found that a welding current of 160A achieved the highest tensile strength, averaging 207.49 MPa. In contrast, 100A yielded the lowest tensile strength at an average of 132.854 MPa, while 130A produced an intermediate average of 154.128 MPa. Bending test results showed that only the 160A weld met standard criteria, whereas welds with 100A and 130A currents exhibited cracks and fractures beyond acceptable limits. Microstructural analysis revealed that the Heat Affected Zone (HAZ) and weld metal at 160A were dominated by the Mg2Si phase, which significantly enhances the mechanical strength of the material. These findings highlight the importance of selecting the appropriate welding current for aluminum 6061. A current of 160A is recommended as the optimal choice to produce strong and reliable weld joints.

References

American Welding Society. (2014). AWS D1.2/D1.2M: 2014 - Structural Welding Code-Aluminum.

Andewi, L. (2016). Pengaruh Variasi Arus Pada Hasil Pengelasan Tig ( Tungsten Inert Gas ) Terhadap Sifat Fisis dan Mekanis Pada Alumunium 6061. Tugas Akhir Sarjana, Universitas Negeri Semarang.

ASME IX. (2019). ASME IX-Welding, Brazing, and Fusing Operators. American Society of Mechanical Engineers .ASME Boiler and Pressure Vessel Committee on Welding, Brazing, and Fusing, SECTION IX(1, July 2021), 421 (260). https://www.asme.org/shop/certification-accreditation.

ASTM-B209. (1996). Astm-B-209-96. In Standards Specification for Alumunium adn Alumunium-Alloy Sheet and Plate (pp. 296–325).

AWS-B4.0:2007. (2007). Standard Methods for Mechanical Testing of Welds. In Aws (pp. 1–135).

Bashoruddin, M., & Nasution, A. H. (2022). Pengaruh Kuat Arus Pada Kekuatan Tarik Aluminium 6061 Dengan Pengelasan Tungsten Inert Gas (Tig). Piston, 7(1), 20–28.

Bohnart, E. R. (2018). Welding : principles and practices (5th ed). McGraw-Hill Education. https://cir.nii.ac.jp/crid/1130000795359571712.bib?lang=ja

Dadang. (2013). Teknik Las GTAW Teknik Las GTAW. Kementrian Pendidikan Dan Kebudayaan, 0341, 91.

Davis, H. E., Troxell, G. E., & Wiskocil, C. T. (1964). The testing and inspection of engineering materials. In (No Title) (3rd ed). McGraw-Hill. https://cir.nii.ac.jp/crid/1130000793659927808.bib?lang=ja

Gatot bintor, A. (2000). Dasar-dasar Pekerjaan Las, 1st ed. Kanisius. https://cir.nii.ac.jp/crid/1130000797953677440.bib?lang=ja

Gou, W., & Wang, L. (2020). Effects of welding currents on microstructure and properties of 5052 aluminum alloy TIG welded joint. IOP Conference Series: Materials Science and Engineering, 772(1). https://doi.org/10.1088/1757-899X/772/1/012011

Iii, S., Kuch, A., & Jalmaf, Y. (2023). Analisis Pengaruh Variasi Besar Arus dan Kecepatan Pengelasan Terhadap Pengujian Tekuk / Bending dan Struktur Makro pada Material Aluminium 6061 dengan Proses Pengelasan TIG ( GTAW ). Senastitan, Senastitan Iii, 1–10.

Kastanto, R., Budiarto, U., & Jokosisworo, S. (2020). Perbandingan Kekuatan Impak, Tarik, dan Mikrografi Sambungan Las MIG dan TIG pada Aluminium 6061 dengan Variasi Media Pendingin Udara dan Air Tawar. Jurnal Teknik Perkapalan, 8(4), 560–570. https://ejournal3.undip.ac.id/index.php/naval

Khusaini, M., Fadelan, F., & Winardi, Y. (2021). Pengaruh Kuat Arus Terhadap Kekuatan Tarik Dan Struktur Mikro Pada Pengelasan Mig (Metal Inert Gas) Aluminium 6061. AutoMech : Jurnal Teknik Mesin, 1(01), 25–29. https://doi.org/10.24269/jtm.v1i01.4271

Mikail Rizki, A. (2018). Analisis Pengaruh Variasi Elektroda Pada Pengelasan Aluminium 5083 Dengan 6061 Terhadap Sifat Mekanik , Struktur Mikro , dan Prediksi Korosi. Teknik ITS, 60–62. https://repository.its.ac.id/52231/2/04311440000011-Undergraduate_Theses.pdf

Pranajaya, W., Santosa, A. W. B., & Budiarto, U. (2019). Analisa Pengaruh Variasi Kampuh Las dan Arus Listrik Terhadap Kekuatan Tarik dan Struktur Mikro Sambungan Las TIG (Tungsten Inert Gas) Pada Aluminium 6061. Jurnal Teknik Perkapalan, 7(4), 286. https://ejournal3.undip.ac.id/index.php/naval

Shanavas, S., & Raja Dhas, J. E. (2017). Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study. IOP Conference Series: Materials Science and Engineering, 247(1), 1–8. https://doi.org/10.1088/1757-899X/247/1/012016

Sodik, A. A., Mufarida, N. A., & Kosjoko, K. (2019). Pengaruh Penerapan Wps (Welding Procedure Specification) Al 6005 Tipe Butt Joint Terhadap Kekuatan Sambungan Las Al 6061. J-Proteksion, 3(2), 1. https://doi.org/10.32528/jp.v3i2.2246

Wicaksana, S. (2016). Sifat Mekanik Dan Struktur Mikro Sambungan Las Aluminium 6061 Hasil Friction Welding. Jurnal ROTOR, 9(1).

Wicaksono, R. T., Suharno, S., & Harjanto, B. (2019). Pengaruh Kuat Arus Pada Pengelasan Paduan Aluminium 6061 Dengan Menggunakan Metode Las Tig Terhadap Kekerasan Dan Struktur Mikro. NOZEL Jurnal Pendidikan Teknik Mesin, 1(1), 37. https://doi.org/10.20961/nozel.v1i1.28484

Submitted

2024-11-26
Accepted
2024-11-28
Published
2024-11-30
How to Cite
[1]
I. Khalilulah, I. Gunawan, and A. Siswanto, “Analysis Of The Effect Of Electric Current In TIG Welding Process On The Strength Of Welded Joints Of Aluminium 6061 Metal Material”, Vomek, vol. 6, no. 4, pp. 405-419, Nov. 2024.