Effect of Airfoil Profile Variations on the Rear Wing of a Racing Car on the Downforce Coefficient Using Computational Fluid Dynamics (CFD) Simulation

  • Carlen Muhammad Hendra Universitas Negeri Padang
  • Delima Yanti Sari Universitas Negeri Padang
  • Arwizet K Universitas Negeri Padang
  • Fitrah Qalbina Universitas Negeri Padang
Keywords: Rear wing; Airfoil; CFD; Coefficient Downforce; Angle of attack

Abstract

Variation of airfoil profile shape in race car rear wings plays a crucial role in generating optimal downforce to improve traction and vehicle stability. The main issue addressed in this study is the lack of clarity regarding which airfoil profile and angle of attack configuration are most effective in producing the highest downforce coefficient (Cdown). This research aims to analyze the aerodynamic performance of symmetric airfoils NACA 0012 and NACA 0015 at three different angles of attack, namely 9.5°, 19.5°, and 29.5°, using Computational Fluid Dynamics (CFD) simulation. The simulations were performed under steady-state flow conditions with an appropriate turbulence model to accurately capture pressure distribution and airflow characteristics. Results show that NACA 0012 generated higher and more stable Cdown values at low to medium angles, with the highest value of 1.4 at 29.5°. In contrast, NACA 0015 exhibited a more gradual performance increase and reached a Cdown of 1.2 only at the highest angle. The study concludes that slender airfoil profiles like NACA 0012 are more suitable for circuits with sharp corners, while NACA 0015 is better suited for straight tracks requiring progressive aerodynamic stability. This research contributes to optimizing rear wing design based on the aerodynamic demands of race cars.

References

Aerowoles. (2015, December 6). Retrieved March 10, 2025, from Wordpress.com website: https://aerowoles.wordpress.com/2015/12/06/penggunaan-kata-aero/.

Agathangelou, B., & Gascoyne, M. (1998). Aerodynamic design considerations of a Formula 1 racing car. SAE Transactions, 107, 2245–2256.

AL-Rawi, M., & Oumssount, A. (2020). One-Way Fluid Structure Interaction of a Go-Kart Spoiler Using CFD Analysis. Figure 1, 51. https://doi.org/10.3390/proceedings2020049051

Ardany, M. D., Pandiangan, P., & Hasan, M. (2021). Lift Force of Airfoil (NACA 0012, NACA 4612, NACA 6612) With Variation of Angle of Attack and Camber: Computational Fluid Dynamics Study. Computational And Experimental Research In Materials And Renewable Energy, 4(2), 80. https://doi.org/10.19184/cerimre.v4i2.28372

Black Hawk, J. (2025). voltex. In Black Hawk Japan. https://www.blackhawkjapan.com/collections/vendors?q=voltex&srsltid=AfmBOop8cx_j1g-A4EkX2fzHdIGiJsGlJf54zfCuNY9FeP5VeNqbfV44

Chiplunkar, V., Gujar, R., Adiverekar, A., Kulkarni, R., & Thonge, A. (2023). Computational fluid dynamics analysis for an active rear-wing design to improve cornering speed for a high-performance car. Materials Today: Proceedings, 77, 887–896.

Ejeh, C. J., Akhabue, G. P., Boah, E. A., & Tandoh, K. K. (2019). Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics. Results in Engineering, 4, 100037.

Hidayat, M. F. (2016). Dengan Ansys Fluent. Analisa Aerodinamika Airfoil Naca 0021 Dengan Ansys Fluent M.

Iljaž, J., Škerget, L., Štrakl, M., & Marn, J. (2016). Optimization of SAE formula rear wing. Strojniski Vestnik/Journal of Mechanical Engineering, 62(5), 263–272. https://doi.org/10.5545/sv-jme.2016.3240

Jameson, A., Martinelli, L., & Vassberg, J. C. (2006). Using Computational Fluid Dynamics for Aerodynamics - a critical assessment. Proceedings of ICAS, 1–24. http://aero-comlab.stanford.edu/fatica/papers/jameson_fatica_hpc.pdf

Karudin, A. (2020). Analisis Numerik Pengaruh Sudut Sudu Pengarah Difuser Jet Swirling dan Grille Terhadap Distribusi Sifat-Sifat Termodinamika Udara dalam Ruang Terkondisi. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 20(2), 117–128. https://doi.org/10.24036/invotek.v20i2.789

Katz, J. (2006). Aerodynamics of race cars. Annual Review of Fluid Mechanics, 38, 27–63. https://doi.org/10.1146/annurev.fluid.38.050304.092016

ÖZTEMEL, M. A., AKTAŞ, F., & YÜCEL, N. (2023). Aerodynamic analysis of car rear spoiler with computational fluid dynamics for different angles and profiles. International Journal of Energy Studies, 8(4), 649–665. https://doi.org/10.58559/ijes.1362690

Qiu, Z., & Zhang, H. (2023). Aerodynamics-based design of the rear wing of a sports car. Applied and Computational Engineering, 11(1), 310–317. https://doi.org/10.54254/2755-2721/11/20230245

Raj, R. R., Tharakaram, N., & Prakash, N. (2022). Design and CFD analysis of a rear wing of a motorsport car. International Journal of Vehicle Structures and Systems, 14(1), 58–62. https://doi.org/10.4273/ijvss.14.1.14

Setiawan, J., & Darmawan dan Harto Tanujaya, S. (2022). Komparasi Simulasi CFD Pada Turbin Cross-Flow Dengan Model Turbulen k-ε STD dan RNG k-ε CFD Simulation Comparative Study on Cross-Flow Turbine with STD k-ε and RNG k-ε Turbulence Models. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa Dan Inovasi, 4, 153–162.

Singh, J., Singh, J., Singh, A., Rana, A., & Dahiya, A. (2015). Study of NACA 4412 and Selig 1223 airfoils through computational fluid dynamics. International Journal of Mechanical Engineering, 2(6), 17–21. https://doi.org/10.14445/23488360/ijme-v2i6p104

Toet, W. (2013). Aerodynamics and aerodynamic research in Formula 1. The Aeronautical Journal, 117(1187), 1–26.

Yang, Z., Gu, W., & Li, Q. (2011). Aerodynamic design optimization of race car rear wing. In 2011 IEEE International Conference on Computer Science and Automation Engineering (pp. 642–646). IEEE. https://doi.org/10.1109/CSAE.2011.

Zaheer, Z., Reby Roy, K. E., Nair, G. S., Ragipathi, V., & Niranjan, U. V. (2019). CFD analysis of the performance of different airfoils in ground effect. Journal of Physics: Conference Series, 1355(1). https://doi.org/10.1088/1742-6596/1355/1/012006

Submitted

2025-07-03
Accepted
2025-07-28
Published
2025-08-31
How to Cite
[1]
C. Hendra, D. Sari, A. K, and F. Qalbina, “Effect of Airfoil Profile Variations on the Rear Wing of a Racing Car on the Downforce Coefficient Using Computational Fluid Dynamics (CFD) Simulation”, Vomek, vol. 7, no. 3, pp. 380-388, Aug. 2025.