Numerical Simulation of Natural Frequency on Shaft Using ANSYS Software

  • Yopi Zekrri Jenizah Putra Universitas Negeri Padang
  • Delima Yanti Sari Universitas Negeri Padang
  • Waskito Waskito Universitas Negeri Padang
  • Zainal Abadi Universitas Negeri Padang
Keywords: Shaft; Natural Frequency; ANSYS; Dunkerley Method; Rayleigh method

Abstract

This descriptive study aims to analyze the effect of shaft diameter on the natural frequency and maximum deformation of a rotating shaft system. The analysis was conducted through numerical simulation using ANSYS Workbench software. The shaft and two symmetrically positioned disks were modeled, and a modal analysis was performed using the Finite Element Method (FEM) to determine the system’s first ten vibration modes. Simulation results showed that the natural frequencies ranged from 80.495 Hz to 280.4 Hz, with a maximum deformation of 58.903 mm occurring in the 9th mode. The lower modes (modes 1–6) exhibited lower frequencies but higher deformation, while higher modes (modes 7–10) showed more complex vibration patterns with consistently significant deformation values. This indicates that higher frequency does not necessarily result in lower deformation, and the system may still experience critical vibration. These findings demonstrate that the shaft's geometric configuration, including diameter and mass distribution of the disks, significantly affects its dynamic behavior. The simulation provides deeper insight into the vibration characteristics of the critical speed shaft apparatus used in practical experiments and serves as a reference for validating theoretical approaches such as the Dunkerley and Rayleigh methods.

References

Aminuddin, A., Susatio, Y., & Hantoro, R. (2013). Respon Getaran Lateral dan Torsional Pada Poros Vertical–Axis Turbine (VAT) Dengan Pemodelan Massa Tergumpal. Jurnal Teknik ITS, 2(1), B116–B121.

Anggara, F. (2020). Validasi Nilai Simulasi Faktor Keamanan Pada Putaran Kritis Poros ST41. Quantum Teknika : Jurnal Teknik Mesin Terapan, 2(1), 32–37. https://doi.org/10.18196/jqt.020120

Aspianor, A., Ayuna, N. A., B, B. A., Bintoro, P., & S, J. A. (n.d.). Jurnal Teknik Perkapalan Getaran Kapal. Jurnal Teknik Perkapalan, 1–12.

Awali, J., & Asroni. (2013). Analisa Kegagalan Poros Dengan Pendekatan Metode Elemen Hingga. Turbo, 2(2), 39–44.

Baher, K., A. Atiyah, Q., & Abdulsahib, I. A. (2022). Comparative study of vibration analysis in rotary shafts between Rayleigh’s and Dunkerley’s methods. Al-Khwarizmi Engineering Journal, 18(2), 29–42. https://doi.org/10.22153/kej.2022.05.001

Endriatno, N. (2022). Analisis Frekuensi Natural Dan Modus Getar Balok Kantilever Aluminium Dengan Metode Elemen Hingga Dan Eksperimental. Jurnal Rekayasa Mesin, 13(1), 231–238. https://doi.org/10.21776/ub.jrm.2022.013.01.22

Fajran Nelfandi, N., Rahman Saleh, A., & Hilmy, F. (2023). Analisis Kegagalan Pada Poros Pompa Sentrifugal 107 Ja Menggunakan Meh (Metode Elemen Hingga) Di Pt. Petrokimia Gresik. Prosiding Seminar Nasional Riset Teknologi Terapan, 4, 2–3.

Fitri, M., & Saputra, D. D. (2023). Simulasi Putaran Kritis pada Poros dengan Beban Alat Uji Putaran Kritis Menggunakan Software ANSYS. Jurnal Unitek, 16(1), 103–114. https://doi.org/10.52072/unitek.v16i1.561

Fries, R. H. (2000). Fundamentals of vibrations. In Handbook of Machinery Dynamics. https://doi.org/10.1115/1.1421112

Ganesan, v. (2012). IC Engines Fourth Edition. In Tata McGraw Hill Education Private Limited. New Delhi. (Vol. 1).

Ghaisani, D. N., Ulfiana, A., & Abadi, C. S. (2020). Analisis Natural Frequency Poros Boiler Feed Pump Turbine dengan Finite Element Analysis. Jurnal Mekanik Terapan, 1(1), 27–34. https://doi.org/10.32722/jmt.v1i1.3328

Grunwald, B. (2018). Vibration Analysis of Shaft in SolidWorks and ANSYS. 53.

Holowenco, A. R. (1985). Dynamic of Machinery. 436.

Jatmoko, awali; A. (2014). Analisa Kegagalan Poros Dengan Pendekatan Metode Elemen Hingga. Turbo, 2(2), 1–6. https://ojs.ummetro.ac.id/index.php/turbo/article/view/31

Limbong, G., & Fitri, M. (2023). Peningkatan Ulang Alat Uji Putar Kritis Poros Beban Menggunakan Metode VDI 2221. Jurnal Unitek, 16(1), 115–124. https://doi.org/10.52072/unitek.v16i1.563

Rao, S. S. (2007). Vibration of Continuous Systems. In Vibration of Continuous Systems. https://doi.org/10.1002/9780470117866

Renaldi, Okariawan, I. D. K., & Chatur, A. D. (2020). Pengaruh Posisi Massa ( Disk ) Dan Panjang Poros Terhadap Putaran Kritis Poros Berbahan Dasar Baja St 52 Dengan Menggunakan Whirling Shaft Apparatus. Dinamika Teknik Mesin, 10(March), 1–10.

Rossing, T. D. (1977). Shock and Vibration Handbook , 2nd ed. . In American Journal of Physics (Vol. 45, Issue 7). https://doi.org/10.1119/1.10796

Solichin, M., Harus Laksana Guntur, Hendrowati, W., & Aida Annisa Amin Daman. (2015). Analisa Efek Whirling pada Poros karena Pengaruh Letak Beban dan Massa terhadap Putaran Kritis. Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV), 364(Snttm Xiv), 1–6.

Vinet, L., & Zhedanov, A. (2011). A “missing” family of classical orthogonal polynomials. In Journal of Physics A: Mathematical and Theoretical (Vol. 44, Issue 8). https://doi.org/10.1088/1751-8113/44/8/085201

Zaki, A., Hartono, B., & Sutoyo, E. (2018). Analisa Getaran Bearing Berbasis Variasi Jarak Penyangga Pada Alat Uji Putaran Kritis. AME (Aplikasi Mekanika Dan Energi): Jurnal Ilmiah Teknik Mesin, 4(1), 9. https://doi.org/10.32832/ame.v4i1.986

Submitted

2025-07-10
Accepted
2025-07-29
Published
2025-08-31
How to Cite
[1]
Y. Putra, D. Sari, W. Waskito, and Z. Abadi, “Numerical Simulation of Natural Frequency on Shaft Using ANSYS Software”, Vomek, vol. 7, no. 3, pp. 389-400, Aug. 2025.