Analysis of the Effect of Bottom Blade Inclination Angle Variations on Torque in Vortex Turbines Using Computational Fluid Dynamics (CFD)
Abstract
The development of renewable energy in Indonesia is a strategic effort to meet increasing energy demands while reducing dependence on fossil fuels. One promising approach is utilizing river flow for micro-hydro power generation, particularly with vortex turbines that operate efficiently under low head and discharge conditions. This study aims to analyze the effect of varying bottom blade inclination angles on the torque generated by a vortex turbine using Computational Fluid Dynamics (CFD) simulations. The research employed ANSYS Fluent with a k-ω SST turbulence model and used a three-dimensional numerical method to evaluate three inclination angles: 22.5°, 32°, and 42°. The results show that blade inclination significantly influences torque values, with the 22.5° angle producing the highest torque of 10.95 Nm, followed by 32° at 10.79 Nm, and 42° at 10.58 Nm. These findings indicate that optimizing blade inclination improves turbine performance, contributing to the development of efficient micro-hydro systems for renewable energy applications.
References
Admiral, R. (2023). Permodelan Unjuk Kerja Turbin Pusaran (Vortex) Untuk Model Alat Uji Pembangkit Listrik Menggunakan Software Ansys Fluent.
Akhwan, Gunari.B, Sunardi, & Wirawan W.A. (2021). RANCANG BANGUN PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) POLITEKNIK PERKERETAAPIAN INDONESIA MADIUN _ Akhwan _ Eksergi _ Jurnal Teknik Energi. EKSERGI Jurnal Teknik Energi , 17, 15–24.
Andri, R., Yuvenda, D., & Purwantono, P. (2024). Simulasi Numerik Variasi Intake terhadap Karekteristik Aliran pada Basin Turbin Vortex. MASALIQ, 4(1), 417–430. https://doi.org/10.58578/masaliq.v4i1.2666
Aspriliansyah, I. P., & Adiwibowo, P. H. (2020). Simulasi Numerik Pengaruh Kemiringan Sudut Sudu Berpenampang Plat Datar Terhadap Kinerja Turbin Aliran Vortex.
Aswanto Harinaldi Trio. (2023). ANALISIS VARIASI JUMLAH SUDU TERHADAP UJI KINERJA TURBINVORTEX. 1–53.
Christina Yessy. (2022). RANCANG BANGUN MODEL TURBIN VORTEX UNTUK PEMBANGKIT LISTRIK TENAGA AIR SKALA LABORATORIUM.
de Sousa, J. V. N., de Lima, A. G. B., Batista, F. A., de Souza, E. C., de Macedo Cavalcante, D. C., de Morais Pessôa, P., & do Carmo, J. E. F. (2020). On the Study of Autonomous Underwater Vehicles by Computational Fluid-Dynamics. In Open Journal of Fluid Dynamics (Vol. 10, Issue 01). https://doi.org/10.4236/ojfd.2020.101005
Dhakal, R., Shrestha, S., Neupane, H., Adhikari, S., & Bajracharya, T. (2020). Inlet and Outlet Geometrical Condition for Optimal Installation of Gravitational Water Vortex Power Plant with Conical Basin Structure. In Lecture Notes in Intelligent Transportation and Infrastructure: Vol. Part F1362 (pp. 163–174). Springer Nature. https://doi.org/10.1007/978-981-32-9971-9_17
Furqani, I., Rudi, ), Arief, K., & Muchlisinalahuddin, ). (2022). Analisis Kekuatan Rangka Mesin Perontok Padi Menggunakan Solidworks 2019 (1)*. Arief & Muchlisinalahuddin, 6(2), 42–49.
Hakki Bil Hamka Muhammad, & Sukaddin. (2022). RANCANG BANGUN DAN UJI UNJUK KERJA TURBIN VORTEX MENGGUNAKAN DUA TIPE PENAMPANG SUDU.
Kartiko Wisnu Katon. (2024). SKRIPSI ANALISIS COMPUTATIONAL FLUID DYNAMICS (CFD) GASIFIKASI KULIT KOPI MENGGUNAKAN REAKTOR DOWNDRAFT MULTI-STAGE.
Kholbika Fitroh, H. (2018). Uji Eksperimental Kinerja Turbin Reaksi Aliran Vortex Tipe Sudu Melengkung Dengan Variasi Sudut Kemiringan. Jurnal Teknik Mesin Unesa, Vol. 6 No. 1, 97–104.
Komarul Ikhsan, H., Nugroho, R., Gusma Wijaya, D., & Setyo Pamuji, D. (2020). Kajian Teknologi : Parameter Desain dan Pemodelan Numerik pada Turbin Vortex Berbasis Gravitasi. Prosiding Nasional Rekayasa Teknologi Industri Dan Informasi XV Tahun 2020 (ReTII), 140–148. https://journal.itny.ac.id/index.php/ReTII/
Nugroho, A. D., Suwandono, P., Hermawan, D., & Fadhillah, A. R. (2022). Pengaruh jumlah sudu terhadap unjuk kerja 3D print turbin air tipe vortex. Turbo : Jurnal Program Studi Teknik Mesin, 11(1). https://doi.org/10.24127/trb.v11i1.1935
Pratama, A., Sidiq, A., & Kalimantan Muhammad Aryad Al Banjari Banjarmasin, I. (2022). PENGARUH VARIASI KEMIRINGAN SUDU BENTUK KERUCUT TERHADAP KINERJA TURBIN AIR JENIS VORTEX.
Pudja Dianda Mayapada, G., Jasa, L., Made Suartika, I., Raya Kampus Unud Jimbaran, J., Kuta Sel, K., & Badung, K. (2022). Rancang Bangun Prototype Turbin Vortex Untuk Pembangkit Listrik Tenaga Mikrohidro (PLTMH) (Vol. 9, Issue 3).
Rahmawaty, K., & Dharma, S. (2021). Simulasi Computational Fluid Dynamic (CFD) Pada Turbin Screw Archimedes Skala.
Rifai, F. (2022). ABSTRACT EFFECT OF VARIATION NUMBER OF BLADE AND TWIST ANGLE OF PERFORMANCE HELICAL TURBINE WITH NACA AIRFOIL 0030 USING COMPUTATIONAL FLUID DYNAMIC METHOD (CFD).
Sinaga, J. B., Sinaga, D., Yonanda, A., Topan, T., & Bahtera, G. (2024). Pengaruh Bentuk Sudu terhadap Efisiensi Turbin Gravitasi Aliran Vortex. Turbo : Jurnal Program Studi Teknik Mesin, 13(2), 574–582. https://doi.org/10.24127/trb.v13i2.3689
Sinuraya, I., Sitorus, T. B., Kamil, I., & Ilmi, B. (2024). Performance of a Vortex Turbine With Modifications to Flow Angle, Blade Inclination, and Flow Velocity for a Cylindrical Basin. Ecological Engineering and Environmental Technology, 25(12), 132–146. https://doi.org/10.12912/27197050/193866
Subekti, R. A., Wijaya, S. K., Sudarmaji, A., Atmaja, T. D., Prawara, B., Susatyo, A., & Fudholi, A. (2023). Runner profile optimisation of gravitational vortex water turbine. International Journal of Electrical and Computer Engineering, 13(5), 4777–4788. https://doi.org/10.11591/ijece.v13i5.pp4777-4788
Submitted
Copyright (c) 2025 Jurnal Vokasi Mekanika (VoMek)

This work is licensed under a Creative Commons Attribution 4.0 International License.