Strength and Deformation Analysis of the Tubular Space Frame of the Megathrust Electric Car with Variations in Dimensions and Materials Using the Finite Element Analysis (FEA) Method

  • Adityo Adityo Universitas Negeri Padang
  • Wanda Afnison Universitas Negeri Padang
  • Waskito Waskito Universitas Negeri Padang
  • Delima Yanti Sari Universitas Negeri Padang
Keywords: Electric Vehicle; Tubular Space Frame; Aluminium Alloy; Finite Element Analysis; Safety Factor

Abstract

The development of electric vehicles in Indonesia has grown rapidly, supported by the Indonesian Electric Car Competition (KMLI) which encourages innovation in designing lightweight yet strong vehicle frames. The tubular space frame of the “Megathrust Electric” car previously used ASTM A36 steel with a total weight of 32 kg, which was considered inefficient as it increased power consumption and reduced overall performance. This study aims to analyze the effect of pipe dimension variations and alternative materials, namely Aluminium alloy 6061 and 6063, on the strength and deformation of the frame. The method employed is Finite Element Analysis (FEA) using SolidWorks software under static loading conditions that represent real operating scenarios. The pipe variations examined include 19.05 mm diameter with 2.5 mm thickness and 25.4 mm diameter with 2 mm thickness. The simulation results show that the 25.4 × 2 mm Aluminium alloy 6061 configuration provides the best structural performance with a maximum stress of 55.07 MPa, deformation of 1.583 mm, and a safety factor (FOS) of 5.012. In contrast, the 19.05 × 2.5 mm Aluminium alloy 6063 configuration is lighter but exhibits higher stress (184.4 MPa) and a lower safety factor (1.161). Therefore, the Aluminium Alloy 6061 pipe with 25.4 mm diameter is recommended as the optimal frame design, offering a balance between strength, stiffness, and weight efficiency to support the performance of electric vehicles in competition.

References

Abbas, H., & Juma, D. (2020). Penerapan Metode Elemen Hingga Untuk Desain dan Analisis Pembebanan Rangka Chassis Mobil Tubular Space Frame. Jurnal Teknologi, 15, 96–102.

Adhim, M. F. (2014). Analisis struktural performa chassis Sapuangin Speed 2013. Sepuluh Nopember Institude of Technology.

Arie, M., Setiawan, A., Sujana, I., & Wicaksono, R. A. (2021). Simulasi Struktur Sasis Mobil Listrik Fakultas Teknik Menggunakan Finite Element Analysis (FEA). Jurnal Teknologi Rekayasa Teknik Mesin (JTRAIN), 2(2), 118–122.

AZoM.com Ltd. (2013). Aluminium Alloy 6061 - Composition, Properties, Temper and Applications of 6061 Aluminium. Online. http://www.azom.com/article.aspx?ArticleID=3328

AZoM. (2005). Aluminium Alloys - Aluminium 6063/6063A Properties, Fabrication and Applications. AZoM. https://www.azom.com/article.aspx?ArticleID=2812

Dixit, V. S., Nukulwar, M. R., Shinde, S. T., & ... (2016). Vibration response and Optimization of Swing arm through Hardening. International Journal of Current Engineering and Technology, 6(7), 8434–8443. https://www.academia.edu/download/64309608/Vibration Response.pdf

Hasanudin, I., Tadjuddin, M., Akhyar, H., & Mardhatillah. (2019). Desain dan Analisis Rangka Mobil Listrik Malem Diwa X.2 Model Prototype Menggunakan Metode Elemen Hingga. Jurnal Teknik Mesin Unsyiah, 7(1), 10–14.

Hendrawan, M. A., Purboputro, P. I., Saputro, M. A., & Setiyadi, W. (2018). Perancangan Chassis Mobil Listrik Prototype “ Ababil ” dan Simulasi Pembebanan Statik dengan Menggunakan Solidworks Premium 2016. The 7th University Research Colloquium 2018, 96–105. https://scholar.googleusercontent.com/scholar?q=cache:hu8YRZyBvHIJ:scholar.google.com/+proses+perancangan+menggunakan+solidworks&hl=id&as_sdt=0,5

Hibbeler, R. C. (2018). Mechanics of Materials Tenth Edition in SI Units (10th ed.). Pearson Education, Inc.

Htay Htay Win, D. R., Hsu, N., & Ko, T. (2019). Structural Analysis of Chassis Frame for Solar Car. 3(2), 534–542.

Ismail, R., Munadi, M., Ahmad, Z. K., & Bayuseno, A. P. (2019). Analisis Displacement dan Tegangan von Mises Terhadap Chassis Mobil Listrik Gentayu. Rotasi, 20(4), 231. https://doi.org/10.14710/rotasi.20.4.231-236

Mardji, Andoko, & Prasetiyo, D. (2018). Strenght analysis chassis of UM electric cars using finite element method. MATEC Web of Conferences, 204, 1–6. https://doi.org/10.1051/matecconf/201820407017

Nain, R., & Sharma, R. (2015). Design and Analysis of Space Frame Tubular Chassis to be used in Formula SAE. International Journal of Aerospace and Mechanical Engineering, 2(6), 22–25.

R.S. Khurmi, J. K. gupta. (2005). Machine design. In Handbook of Machinery Dynamics. Eurasia Publishing House (PVT.) LTD. https://doi.org/10.1038/042171a0

Ricchard G. Budynas, J. K. N. (2020). Shigley ’ s Mechanical Engineering Design 11th Edition (11th ed.). McGraw-Hill Education.

Sahu, Y., Ramachandran, N., & Manvatkar, S. (2018). Design and Analysis of Tubular Space Frame Chassis for Student Formula Race Car. Inrenational Journal of Innovation in Engineering Research and Technology, 2018, 124–128.

Shiddieqy, R. H. A. (2015). Analisa Kekuatan Chassis Mobil Listrik “Braja Wahana” Profil Hollow Dengan Variasi Ketebalan. In Undergraduate thesis.

Shobhit Agarwal, Prashant Awasthi, Tarun Saatyaki, & Mukul Kushwaha, Vishal Jaiswal. (2020). Design Analysis of Spaceframe Chassis for FSAE Vehicle. International Journal of Engineering Research And, V9(03), 2–5. https://doi.org/10.17577/ijertv9is030522

Toteles, A., & Alhaffis, F. (2021). ANALISIS MATERIAL KONTRUKSI CHASIS MOBIL LISTRIK LAKSAMANA V2 MENGGUNAKAN SOFTWARE AUTODESK INVENTOR Program Studi Sarjana Terapan Teknik Mesin Produksi dan Perawatan , Jurusan Teknik Mesin , Politeknik Negeri Bengkalis Email : arishtoteles99@gmail.com 30. Machine; Jurnal Teknik Mesin, 7(1), 30–37.

Tsirogiannis, E. C., Stavroulakis, G. E., & Makridis, S. S. (2019). Electric car chassis for Shell Eco Marathon competition: Design, modelling and finite element analysis. World Electric Vehicle Journal, 10(1), 1–13. https://doi.org/10.3390/wevj10010008

Wang, S., & Wang, D. (2021). Crashworthiness-based multi-objective integrated optimization of electric vehicle chassis frame. Archives of Civil and Mechanical Engineering, 21(3), 1–18. https://doi.org/10.1007/s43452-021-00242-2

Submitted

2025-08-30
Accepted
2025-10-24
Published
2025-11-05
How to Cite
[1]
A. Adityo, W. Afnison, W. Waskito, and D. Sari, “Strength and Deformation Analysis of the Tubular Space Frame of the Megathrust Electric Car with Variations in Dimensions and Materials Using the Finite Element Analysis (FEA) Method”, Vomek, vol. 7, no. 4, pp. 471-481, Nov. 2025.