LMTD-Based and Effectiveness Analysis of Cooling Performance on a 5 kW Axial Flux Permanent Magnet BLDC Motor Design Using CFD Simulation

  • Riezky Hidayattullah Universitas Negeri Padang
  • Dori Yuvenda Universitas Negeri Padang
  • Yolli Fernanda Universitas Negeri Padang
  • Andre Kurniawan Universitas Negeri Padang
Keywords: BLDC Motor, LMTD, Cooling effectiveness, ANSYS Fluent, CFD

Abstract

Axial flux type BLDC motors primary issue is the high operating temperature of the stator and winding components, which can lower system efficiency and hasten the deterioration of the quality of the insulation material. This study is to examine the effects of geometric alterations to the cooling system, such as axial fins on the housing side and curved fins on the casing, on the temperature distribution of a 5-kW axial flux permanent magnet BLDC motor. Convection and conduction heat transport in the cooling system were modeled using ANSYS Fluent software and computational fluid dynamics (CFD) simulation techniques. The Log Mean Temperature Difference (LMTD) and the cooling design's relative efficacy in comparison to the baseline state are the primary metrics that are examined. According to the simulation results, the maximum winding temperature may be lowered to 311 K and the cooling distribution in the rotor, casing, and housing can be improved by adopting curved fin casing and axial fin housing. As the temperature differential between the coolant and the motor surface narrows, the LMTD value drops from the initial condition (5.10 K to 13.94 K), suggesting a more effective heat transfer process. Furthermore, the cooling system's efficiency has more than doubled since its original design. Overall, the study's findings demonstrate that enhancing the cooler's geometric design can increase the BLDC motor's thermal performance and prolong component life.

References

Albana, M. H., Guntur, H. L., & Khrisna Putra, A. B. (2023). The Effect of Fins Design on the Thermal Characteristics of Electric Motors for Electric Vehicles. 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation, ICAMIMIA 2023 - Proceedings. https://doi.org/10.1109/ICAMIMIA60881.2023.10427619

Bergman, L. T., Lavine, S. A., Incropera, P. F., & Dewitt, P. D. (2011). Introduction to Heat Transfer (L. Ratts & R. Marchione, Eds.; 6th ed.). Wiley.

Bhambere, M. B., Chaudhari, S. S., & Banait, H. R. (2025). Experimental and numerical investigation of heat transfer enhancement using perforated fins in electric motor. International Communications in Heat and Mass Transfer, 166, 109115. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2025.109115

Çengel, A. Y., & Ghajar, J. A. (2015). Heat and Mass Transfer: Fundamentals & Applications, Fifth Edition (Fifth Edition). McGraw-Hill Education.

Chang, S. W., Chiang, K. F., Zheng, Y., Huang, C. C., & Chen, P. H. (2008). Detailed heat transfer measurements of curved fin channels. Heat Transfer Engineering, 29(10), 849–863. https://doi.org/10.1080/01457630802125641

Gammaidoni, T., Zembi, J., Battistoni, M., Biscontini, G., & Mariani, A. (2023). CFD Analysis of an Electric Motor’s Cooling System: Model Validation and Solutions for Optimization. Case Studies in Thermal Engineering, 49, 103349. https://doi.org/https://doi.org/10.1016/j.csite.2023.103349

Grover, R. O., Yang, X., Parrish, S., Nocivelli, L., Asztalos, K. J., Som, S., Li, Y., Burns, C., Van Gilder, J., Attal, N., & Avanessian, O. (2022). CFD simulations of electric motor end ring cooling for improved thermal management. Science and Technology for Energy Transition (STET), 77(4). https://doi.org/10.2516/stet/2022015

Hao, Z., Ma, Y., Wang, P., Luo, G., & Chen, Y. (2022). A Review of Axial-Flux Permanent-Magnet Motors: Topological Structures, Design, Optimization and Control Techniques. In Machines (Vol. 10, Issue 12). MDPI. https://doi.org/10.3390/machines10121178

Kuria, J., & Hwang, P. (2011). Optimizing Heat Sink Geometry for Electric Vehicle BLDC Motor Using CFD. Sustainable Research and Innovation Proceedings, 3(0), 1–9. Http://41.204.187.99/Index.Php/Sri/Article/View/47

Lee, J., & Um, S. (2024). Effective thermal management scheme foradvanced traction motors with internal oil-and external water-cooling systems. Journal of Mechanical Science and Technology, 38(7), 3849–3862. https://doi.org/10.1007/s12206-024-0653-4

Mazur, M., Skarka, W., Kobielski, M., Kądzielawa, D., Kubica, R., Haas, C., & Unterberger, H. (2024). Heat Exchange Analysis of Brushless Direct Current Motors. Energies, 17(24). https://doi.org/10.3390/en17246469

Nurmansyah, R., Yuvenda, D., & Lapisa, R. (2024). Analisis Pengaruh Kecepatan Aliran Sistem Pendingin Terhadap Temperatur Kerja Pada Desain Motor BLDC Tipe Permanen Magnet Fluks Aksial Menggunakan Ansys Fluent. Jurnal Pendidikan Tambusai, 8(2), 29687–29695.

Ramesh, C., Subbiah, A., Sivakumar, K., & Sri Gokul, T. (2021). Design and Material Optimization of Cooling Fins in Electric Motors (Vol. 25). http://annalsofrscb.ro

Escalona, A. A. S., & Leyva, E. G. (2021). Determination of overall heat transfer coefficients comparing LMTD and ε-NTU methods. Thermal Science and Engineering, 4(1), 42. https://doi.org/10.24294/tse.v4i1.1511

Shah, Remesh. K., & Sekulic´, D. P. (2003). Thermodynamic Modeling and Analysis. In Fundamentals of Heat Exchanger Design (pp. 735–808). https://doi.org/https://doi.org/10.1002/9780470172605.ch11

Shewalkar, A., Dhoble, A., & Thawkar, V. (2024). Review on cooling techniques and analysis methods of an electric vehicle motor. Journal of Thermal Analysis and Calorimetry, 149. https://doi.org/10.1007/s10973-024-13091-x

Sulistyono. (2012). Pemanasan Global (Global Warming) dan Hubungannya Dengan Penggunaan Bahan Bakar Fosil. Swara Patra : Majalah Ilmiah PPSDM Migas, 2(2), Vol.2 No. 2. https://ejurnal.ppsdmmigas.esdm.go.id/sp/index.php/swarapatra/article/view/60

Vu, D. T., & Hwang, P. (2013). New Cooling System Design of BLDC Motor for Electric Vehicle Using Computation Fluid Dynamics Modeling. Journal of the Korean Society of Tribologists and Lubrication Engineers, 29(5), 318–323. https://doi.org/10.9725/kstle.2013.29.5.318

Wang, X., Li, B., Gerada, D., Huang, K., Stone, I., Worrall, S., & Yan, Y. (2022). A critical review on thermal management technologies for motors in electric cars. Applied Thermal Engineering, 201. https://doi.org/10.1016/j.applthermaleng.2021.117758

White, M. F. (2009). Fluid Mechanics (7th ed.). Mcgraw-Hill.

Yedamale, P., & Microchip Technology Inc. (2003). Brushless DC (BLDC) Motor Fundamentals.

Submitted

2025-10-20
Accepted
2025-10-30
Published
2025-11-05
How to Cite
[1]
R. Hidayattullah, D. Yuvenda, Y. Fernanda, and A. Kurniawan, “LMTD-Based and Effectiveness Analysis of Cooling Performance on a 5 kW Axial Flux Permanent Magnet BLDC Motor Design Using CFD Simulation”, Vomek, vol. 7, no. 4, pp. 508-520, Nov. 2025.